
DOI: 10.1111/cgf.70226 COMPUTER GRAPHICS forum
Volume 0 (2025), number 0, e70226

Hierarchical Differentiable Fluid Simulation

Xiangyu Kong,1,2,3 Arnaud Schoentgen,3 Damien Rioux-Lavoie,3 Paul G. Kry1 and Derek Nowrouzezahrai1,2,4

1McGill University, Montreal, Canada
xiangyu.kong@mail.mcgill.ca, {paul.kry, derek.nowrouzezahrai}@mcgill.ca

2Mila, Quebec AI Institute, Montreal, Canada
3Ubisoft Montreal, Montreal, Canada

{arnaud.shoentgen, damien.rioux-lavoie}@ubisoft.com
4Canada CIFAR, Toronto, Canada

Abstract
Differentiable simulation is an emerging field that offers a powerful and flexible route to fluid control. In grid-based settings, high
memory consumption is a long-standing bottleneck that constrains optimization resolution. We introduce a two-step algorithm
that significantly reduces memory usage: our method first optimizes for bulk forces at reduced resolution, then refines local
details over sub-domains while maintaining differentiability. In trading runtime for memory, it enables optimization at previously
unattainable resolutions. We validate its effectiveness and memory savings on a series of fluid control problems.

Keywords: differentiable fluid simulation, fluid control, fluid simulation

CCS Concepts: • Computing methodologies → Physical simulation;

1. Introduction

Modern fluid simulations are widely used in many industries, for ex-
ample visual effects, game development, manufacturing and adver-
tising; however, controlling the behaviour of these simulations re-
mains challenging due to the non-linearity of their governing equa-
tions.

Fluid control is an inverse problem where the goal is to com-
pute initial simulation states and control parameters, to guide the
simulated output to an approximate of a target state. Differentiable
simulation [dSA*18, HAL*19, UBF*20] has recently emerged as
a promising solution that uses automatic differentiation (AutoDiff)
[BPRS18] to automate the computation of target loss gradients (with
respect to simulation parameters). These gradients can then be used
with gradient-based optimization to solve the inverse problems. This
approach is general, supporting many applications in a single frame-
work and avoiding the need to create handcrafted methods.

Despite the advantages, differentiable simulation has high mem-
ory consumption requirements: as simulation resolution increases,
the memory required to compute gradients grows non-linearly, es-
pecially in 3D scenes. While more powerful hardware and/or larger
compute farms can be used to distribute this cost, this is impractical
for games and visual effects artists who primarily rely on consumer-

grade hardware to produce visually pleasing animations. For in-
stance, more than 40GB of VRAM are needed to optimize for con-
trol forces for a 2563 resolution simulation for 40 timesteps as shown
in Figure 1. This memory constraint limits the applicability and util-
ity of differentiable simulation in the gaming and visual effects in-
dustries. Our work enables scalable differentiable fluid simulation
for such large-scale fluid control tasks.

We draw inspiration from domain decomposition and multi-
resolution optimization to address this memory bottleneck. Our con-
tributions include the following:

• an iterative differentiable smoke simulation optimization frame-
work that solves control problems with significantly reduced
memory consumption at the expense of higher computation time;

• a subgrid method that mimics full-resolution simulation, main-
taining differentiability w.r.t. simulation inputs;

• a hierarchical domain subdivision strategy that further reduces
memory consumption for gradient computation, with a trade-off
in runtime and slight accuracy degradation in some cases; and

• a Python implementation and performance measurements,
benchmarked against an existing differentiable simula-
tor [HTK19].

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

1 of 16

https://orcid.org/0000-0001-9399-8356
https://orcid.org/0000-0001-5762-3450
https://orcid.org/0000-0002-6328-1001
https://orcid.org/0000-0003-4176-6857
https://orcid.org/0000-0002-4279-1774
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.70226&domain=pdf&date_stamp=2025-10-17

2 of 16 Kong et al. / Hierarchical-Diff-Fluid

Figure 1: We optimize space-time forces to drive a grid-based smoke simulation (2563, 40 frames) to match a 3D armadillo target. We reduce
memory consumption by 80% compared to a full resolution baseline with our bulk and iterative subgrid differentiable simulation approach.

2. Previous Work

We discuss relevant work in fluid simulation and control from the
computer graphics literature, before summarizing advances from
differentiable simulation and its application to fluid control. We fi-
nally review the use of domain decomposition and multi-resolution
optimization methods in fluid simulations, since our algorithm
draws inspiration from both techniques.

2.1. Fluid Simulation

The field of fluid simulation has enjoyed significant advancements
in the past few decades. Lagrangian particle-based methods, such as
smoothed particle hydrodynamics (SPH) [MCG03], treat fluids as
particle systems and use smoothing kernels to approximate proper-
ties carried by each particle. In contrast, Eulerian grid-based meth-
ods [FM97b, Sta99] compute the evolution of the fluid quantities
at fixed positions in space. Hybrid methods, such as particle in cell
(PIC) and fluid implicit particle (FLIP) [Har62, BR86, ZB05], com-
bine the advantages of both representations. In the recent years, new
techniques such as flow map based fluids [ZCD*24] and Monte
Carlo fluids [RSÖ*22, SBH24] have been explored to introduce new
families of methods with distinct sets of properties.

Our work targets the grid-based fluid representation. Specifically,
we adapt the stable fluids algorithm [Sta99, Bri15], which is an
industry-standard grid-based method renowned for its simplicity
and unconditional stability. Our implementation builds on the semi-
Lagrangian approach introduced by this algorithm, and in addition,
we implement the staggered grid discretization [HW65] to enhance
simulation accuracy and prevent null-space problems. While our al-
gorithm leverages this specific implementation, it is readily general-
izable to other grid-based fluid simulation methods. For instance, in
collocated grids, we can adapt our method to evaluate vector quan-
tities at grid centres instead of at cell face centres.

2.2. Fluid Control

Fluid control is an important yet challenging problem that has count-
less applications in many fields, ranging from looping animation and
keyframe matching in games and visual effects [JWLC23, HTK19,
UBF*20], to material shape and property optimization in manufac-
turing and engineering [MP04, HLM*19]. In the field of computer
graphics, fluid control is broadly applied to the problem of target-
driven fluid animation [Sch21]. Over the past few decades, extensive

advancements have been made in this field. Early work tackles this
problem by directly modifying fluid properties such as pressure and
velocity [FM97a]. Some later works tackle the problem of target-
driven fluid animation by directly computing forces based on the
difference between the simulated smoke state and the desired target
states [FL04, MM13], and others merge reverse simulations with
forward ones to create visually pleasing transitions to achieve the
target state [OFEH18, SPM22].

Another popular class of methods that controls the fluid motion is
gradient-based optimization methods. Analytical gradients for each
fluid operator have been derived [TMPS03] and were later accel-
erated using the adjoint method [MTPS04]. Recently, further im-
provements have focused on improving the quality, runtime, and
memory consumption of the gradient-based fluid control problems
[PM17, TACS21, CLL24]. These methods all rely on the analyti-
cally derived gradients for optimization, but a major drawback is
that the gradient derivations are tightly coupled with the solver im-
plementation. Any change in the solver requires re-derivation and
re-implementation of the gradients, which is a cumbersome and
error-prone process. Our method leverages modern AutoDiff frame-
works, adopting a differentiable simulation approach that is general
and flexible, with gradient computation independent of the underly-
ing solvers.

2.3. Differentiable Simulation

Alongside the recent surge of research in machine learning, the
paradigm of differentiable simulation has gained popularity over
the past few years. Using automatic differentiation (AutoDiff)
[BPRS18], differentiable simulations enable gradient propagation
from the output states of physics simulations to the input parame-
ters. These gradients are computed automatically and can be used
in gradient-based optimization methods. Moreover, these differen-
tiable simulations can act as modular components that can be easily
integrated into machine learning networks and pipelines [JMG*21,
dSA*18, LXY*23].

There are many differentiable simulation frameworks. DiffTaichi
[HAL*19] accelerates gradient computation using source code
transformations and global tracing. PhiFlow [HTK19], specializ-
ing in differentiable fluid simulations, supports multiple AutoDiff
frameworks including PyTorch [PGM*19], TensorFlow [AAB*16]
and Jax [SC20]. While differentiable simulation is generally ag-
nostic to underlying solver implementations, this flexibility comes

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Kong et al. / Hierarchical-Diff-Fluid 3 of 16

at the cost of high memory consumption arising from the need to
build computation graphs that store operations during solver roll
outs [BPRS18]. This memory consumption scales non-linearly with
the simulation’s degrees of freedom. This behaviour is especially
severe for grid-based simulations, where depending on the dimen-
sionality, a linear grid resolution increase results in a quadratic or
cubic increase in the degrees of freedom.

Gradient checkpointing [CXZG16] partially addresses this chal-
lenge by temporally segmenting the simulation and only construct-
ing computation graphs in each segment; however, it does not ad-
dress spatial memory constraints and therefore does not scale ef-
fectively with simulation resolution. Our work introduces a novel
method to tackle this spatiotemporal memory bottleneck, borrowing
ideas from domain decomposition and multi-resolution methods.

2.4. Domain Decomposition and Multi-Resolution
Optimization

Domain decomposition is a class of methods for solving partial dif-
ferential equations by dividing larger problems into smaller sub-
problems, solving each separately before merging local solutions
into a global result. Domain decomposition has been success-
fully applied to fluid simulations in physics [THH21] and graph-
ics [GNS*12, CZY17]. High-performance computing (HPC) and
distributed fluid simulations [TAB*96, ZG11, GNS*12, MSQ*18]
decompose large simulation domains into sub-domains and solve
each sub-domain in parallel on multiple compute units. The sub-
domains communicate with each other through methods such as
halo and ghost boundary cells [ZG11, ZM18] to ensure consistency
across domain boundaries. Our method, described in Section 3.2,
shares similarities with this strategy; however, these sub-domain
communication methods cannot be applied directly to control prob-
lems or differentiable simulations, where the gradient computations
between the subdomains are undefined due to the discontinuities.
Although there has been some exploration of domain decomposi-
tion in fluid control [YC17], little prior work addresses these chal-
lenges in differentiable simulations. We propose an iterative scheme
to resolve this limitation.

Hierarchical multi-resolution methods are another class of ap-
proaches commonly used for large-scale optimization problems
[KY00, RWA21, XZ23]. This class of methods solve the problem
progressively from coarse to fine resolution. In fluid simulations,
multi-grid methods are commonly used to accelerate convergence
by iteratively computing residual solutions across different reso-
lution levels, using high-frequency local solutions to refine low-
frequency global solutions [MST10, PM17].

We are inspired by domain decomposition and multi-resolution
optimization. Our approach begins with a coarse optimization,
which captures the global fluid motion. It is then followed by a series
of iterative sub-domain optimizations to refine the local forces.

3. Method

We target inviscid fluid flows for simplicity, which are governed by
the incompressible inviscid Navier–Stokes equations

∂u
∂t

+ u · ∇u = −ρ−1∇p+ f ,∇ · u = 0 ,
∂s

∂t
+ u · ∇s = 0, (1)

where u is the velocity, s is the smoke density that gets passively
advected along with u, p is the pressure used to satisfy the incom-
pressibility constraint, f are time-varying external forces applied to
the fluid body, and ρ is the fluid density. To properly define the fluid
behaviour, we also need to enforce conditions at the domain bound-
aries as well as initial conditions. When discretized, the simulation
takes place over a nx × ny grid and over T time steps. The process of
computing the simulation solution state from simulation parameters
is referred to as forward simulation.

In contrast, a typical fluid control problem involves finding sim-
ulation parameters so that solving Equation (1) achieves a user-
defined goal, such as a target solution state. For this reason, these
types of fluid control problems are referred to as inverse simulation,
taking solution states to simulations parameters.

To demonstrate our method, we will focus on a subset of fluid
control problems called keyframing, although our method gener-
alizes to other types of inverse simulation problems such as op-
timizing for airfoil shapes and lift in engineering, where instead
of optimizing a series of forces, the obstacle itself is optimized.
Given a set K of user-provided keyframes st∗ where t ∈ K, we wish
to find a series of time-varying dense force fields f ∈ R

nx×ny×T ,
such that the simulated density fields st are as close to st∗ as
possible.

We can formulate this problem as optimizing parameters f to min-
imize an objective � (i.e. argminf �(f, s); [CLL24]) with

�(f, s) = 1

NK

∑
t∈K

∥∥st − st∗
∥∥2 + w f

NT

T∑
t=0

∥∥ft∥∥2
, (2)

where the first term minimizes the discrepancy, measured by the
mean squared error, between the optimized and target smoke den-
sities at each keyframe t, and the second regularization term pre-
vents excessive control forces from being applied to the simu-
lation. Here, NK and NT are normalization terms, and the coef-
ficient w f is user-defined. In practice, we found that w f = 0.1
leads to a good balance between visual result and optimized force
magnitude.

Our work relies on the use of gradient-based optimization meth-
ods to minimize this objective function. More specifically, we ap-
ply a differentiable simulation approach by using AutoDiff to auto-
matically compute gradients through the construction of the com-
putation graph. While this method is agnostic to the underlying
fluid solver used, naively using this approach comes with severe
drawbacks. Indeed, to compute the gradient of the objective func-
tion with respect to the forces using AutoDiff, the computation
graph records all the computations encountered during the simu-
lation. In grid-based simulations, the number of parameters and
computations required increases not only linearly as the number of
time steps increases, but also quadratically (or cubically in 3D) as
the grid resolution increases. These factors contribute to the expo-
nential scaling in the size of the computation graph. For this rea-
son, the high memory consumption is a major bottleneck of dif-
ferentiable fluid simulation and limits the resolution of the control
problem.

To address this problem, we take inspiration from domain
decomposition and multi-resolution methods. To do this, we split

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 16 Kong et al. / Hierarchical-Diff-Fluid

Figure 2: Our pipeline consists of twomain components. First, we perform (a) bulk optimization of control forces on down-sampled simulation
trajectory states, and then up-sample and re-simulate the result. We then perform (b) iterative subgrid optimization. Control forces for each
subgrid are optimized and then replaced into the full grid and re-simulated to propagate the optimized information to other quadrants over
iterations. The optimize-and-re-simulate process is repeated until the resulting full grid converges.

the optimization into two parts, bulk optimization and subgrid
optimizations, as shown in Figure 2. The bulk optimization part
operates on a down-sampled resolution to optimize the general bulk
motion of the fluid, whereas the subgrid optimization builds on top
of it to refine local details. Both of these optimization steps work at
a lower resolution than the original problem and hence reduce the
memory required to build the computation graph used by AutoDiff.
We present our derivation in 2D and for inviscid flows. Our method
naturally extends to 3D, and we demonstrate 3D experiments in
Section 4.8. Our method focuses on simulations within a closed
domain with slip boundary conditions and no obstacles. Further
effects could be incorporated into the equations of motion of the
fluid, such as viscosity; however, for simplicity, we discuss only
inviscid flows in this work.

3.1. Bulk Optimization

The bulk optimization phase is based on the following insight: we
can decouple the solution forces f� that minimize the objective func-
tion � into bulk and fine details, which correspond to low- and high-
resolution components. Thus, with the bulk optimization process,
we aim to optimize a low-resolution force field that drives the fluid’s
bulk motion to match the keyframes.

At the beginning of the bulk optimization phase, both the
keyframe targets and the simulation initial states are down-sampled
by a factor k into (nx/k) × (ny/k) by averaging the neighbouring
values. These down-sampled keyframes and initial states are then
used for optimizing the down-sampled forces. The initial guess of
the optimized forces is set to a constant zero field.

For each optimization iteration, the simulation is first rolled out
using the down-sampled initial states and forces. Then, the objec-
tive function � is evaluated using the down-sampled keyframes and
the simulated states. Using AutoDiff, the force gradients are com-
puted by back-propagating through the computation graph contain-
ing all operations used for simulation and loss evaluations. With a
optimization step size αbulk defined by the user, this gradient is then
used to update the forces. This process is repeated for a user-defined
amount of epochs Nbulk. After the optimization converges, we up-
sample the forces to the full resolution using bi-linear interpolation
to obtain the bulk forces f̂ at resolution nx × ny.

In practice, we find the optimal value of k depends on the sim-
ulation resolution. Larger factors will result in faster runtime and
lower memory consumption. If the original simulation resolution is
too large, larger k is also beneficial in that it leads to a higher qual-
ity optimized bulk motion due to the reduced degrees of freedom;
however, if the original resolution is already small enough, higher k
leads to lower-quality results after the forces are up-sampled.

As a final step in the bulk optimization, we compute a full-
resolution simulation using f̂ to obtain the bulk smoke ŝ, velocity
û and pressure p̂. This step is necessary as simple up-sampling of
these fields would not be physically consistent with the up-sampled
bulk force due to the non-linearity of advection and pressure projec-
tion. Note that because of this non-linearity and this re-simulation
step which is not in the optimization loop, the bulk states will not
perfectly match the full-resolution target keyframes; however, build-
ing on top of the bulk low-frequency global information, we can
optimize for the remaining high-frequency local forces using sub-
grid optimization.

We note that the final forward simulation computations, while
full-resolution, do not contribute to the memory consumption for
building the computation graph. For this reason, the memory con-
sumption for bulk optimization is 1/kd compared to the full resolu-
tion, where d is the dimension.

3.2. Subgrid Simulation

As we mentioned in the last section, the bulk forces guide the gen-
eral motion of the fluid to be close to the keyframes. To further im-
prove the results, all while maintaining the low memory consump-
tion, we divide the high-resolution grid into subgrids for a second
optimization pass. Our method supports hierarchical division in a
recursive manner. We will describe the base case in this section and
Section 3.3, and the recursive hierarchical case in Section 3.4.

At the base level, our method divides the bulk grids into 2 × 2
valid subgrids s̄, ū and p̄, corresponding to smoke, velocity and pres-
sure subgrids, each of size nx

2 × ny
2 . Our method can be generalized

tom× m subgrids form ≥ 2, and all of the methods described in the
following sections still apply; however, in our experiments, we did
not find that necessary, especially due to the hierarchical division
described in Section 3.4.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Kong et al. / Hierarchical-Diff-Fluid 5 of 16

δ

Figure 3: During advection, back-tracing may exceed interior
boundaries and land outside of the valid region (left). To handle
this case, we use a buffer region of width δ to ensure the back-trace
lands at a region with known values (right).

3.2.1. Advection

The first non-trivial step in the subgrid forward simulation is the
advection operator, which encapsulates the phenomenon of quanti-
ties being carried through the velocity field. Our advection opera-
tor builds upon the widely-used semi-Lagrangian advection scheme
[Sta99], with specific handling for cases where the back-traced posi-
tion computed during advection lands outside of the simulated sub-
grids.

In a full-resolution simulation, if the back-traced positions ex-
ceed the simulation domain, depending on the scene settings, there
are different boundary treatments such as nearest-neighbour, reflec-
tion or periodic schemes [Sta99, Bri15]. However, in subgrid simu-
lations, if the back-traced positions exceed the interior boundary, as
shown in Figure 3 left, the location lies within a neighbouring sub-
grid, and all of these existing extrapolation treatments will result
in inaccurate simulation results. To handle these interior boundaries
more robustly, we extract this information from the bulk simulations
during subgrid division, as it is available from the forward simula-
tion up-sampling step and does not suffer from extrapolation error.

We extend each valid, divided subgrid with a buffer region, de-
noted sδ and uδ correspondingly. Figure 3 right illustrates the valid
and buffer region for the bottom-left subgrid. The width of the
buffer region δ can be estimated using the bulk velocity as δ =
�(max û × �t)/�x�, for time step �t and grid resolution �x. Dur-
ing subgrid advection, the values inside the valid regions are back-
traced and updated, while the buffer regions are read-only and pro-
vide information when the back-trace exceeds the interior boundary,
as shown in Figure 3 left.

In practice, we use the CFL condition [CFL28] to determine �t
and �x. To avoid overly large velocity magnitudes that cause high
δ, the penalty term in Equation (2) is used to regulate the force mag-
nitude. Throughout our experiments, we did not observe buffer re-
gions of size more than 10% of the full resolution.

3.2.2. Pressure Projection

In fluid simulations, the pressure projection step ensures fluid
incompressibility and adherence to boundary conditions. For
a full-resolution simulation, this step computes pressure using

global velocity divergence and boundary conditions, resulting in a
divergence-free velocity field after applying the pressure gradient.

Dividing the simulation domain into subgrids, however, creates a
loss of global information and introduces unrealistic interior bound-
aries. To more closely match the subgrid simulation to the full-
resolution setting, the ideal interior boundary condition should cap-
ture as much global information as possible. As in Section 3.2.1,
existing boundary treatments fall short: Neumann interior bound-
aries impeded fluid flow between subgrids, and free-flow interior
boundaries fail to encode information about velocities outside the
subgrid, leading to incorrect behaviour.

We apply a Dirichlet interior boundary condition leveraging
global information from the bulk optimization in Section 3.1. Fol-
lowing the bulk optimization, we obtain the full resolution bulk
smoke ŝ, velocity û and pressure p̂ through re-simulation. The bulk
pressure already satisfies the global divergence-free and exterior
boundary constraints and will serve as a reference. By applying this
boundary pressure as a Dirichlet condition between subgrids, the
pressures within each subgrid align closely with the corresponding
bulk pressure. Consequently, the updated and stitched subgrid ve-
locities will resemble the bulk fluid flow and satisfy the constraints.

We demonstrate our method using a staggered grid [HW65] spa-
tial discretization scheme. In a staggered grid, scalar quantities are
stored at grid centres, while vector quantities such as velocity are
stored at grid face centres. Computing the pressure involves solving
a discretized Poisson equation

�t

ρ

(
4pi, j − pi−1, j − pi+1, j − pi, j−1 − pi, j+1

�x2

)

= −
(ui+ 1

2 , j − ui− 1
2 , j

�x
+

vi, j+ 1
2

− vi, j− 1
2

�x

)
.

(3)

To construct Dirichlet boundary conditions, we approximate the
interior boundary pressure pb on cell faces by linearly interpolat-
ing the bulk pressures p̂ from adjacent cell centres. This is demon-
strated in Figure 4. Without loss of generality, and in 2D, assume
the boundary lies between cells (i, j) and (i+ 1, j). We approxi-
mate the boundary pressure as pb = (p̂i, j + p̂i+1, j)/2 . This bound-
ary pressure serves as the Dirichlet boundary condition on the inte-
rior boundary during subgrid simulations.

The subgrid pressure should maintain the same pressure on the in-
terior boundary. We use ‘ghost’ pressure cells pgi+1, j to derive the up-
dated Poisson equation when computing subgrid pressures p̄i, j. Sim-
ilarly upholding Dirichlet boundary conditions, the ghost and inte-
rior boundary pressure cells should satisfy pb = (p̄i, j + pgi+1, j)/2.

Rearranging and substituting the ghost pressure into Equation (3),
the discretized Poisson equation for cell (i, j) is

�t

ρ

(
5pi, j − pi−1, j − pi, j−1 − pi, j+1

�x2

)

= −
(ui+ 1

2 , j − ui− 1
2 , j

�x
+

vi, j+ 1
2

− vi, j− 1
2

�x

)
+ 2�t pb

ρ�x2
.

(4)

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 16 Kong et al. / Hierarchical-Diff-Fluid

Figure 4: The interior boundary pressure at the cell face center,
pb, is computed from the bulk pressure p̂. The subgrid pressure pro-
jection should respect the same pressure at the boundary cell face
centre. By using a ‘ghost’ pressure cell pg, we can use a Dirichlet
boundary condition to approximate the required pressure at the in-
terior cell centre.

The above derivation generalizes to all cells adjacent to interior
boundaries. Finally, by constructing the linear system Ap = b and
solving for the pressures, the velocity is updated using the pressure
gradient. The computed pressures and velocities closely match the
bulk information, ensuring that the forward subgrid simulation re-
sembles the bulk flow.

We note that interpolating the boundary pressure pb is neces-
sary. If the pressure is taken directly from the neighbouring cell
outside the interior boundary, i.e. setting pgi+1, j = p̂i+1, j, the pres-
sure solve will result in band-like artifacts with a width of two pix-
els along the interior boundary, and results in inaccurate simulation
outcome.

3.3. Subgrid Optimization

In the previous section, we demonstrated how to forward simulate
subgrids using bulk information. In this section, we detail how to op-
timize the subgrids. We first note that all operations we described in
the previous section maintain the solver’s differentiability. Indeed,
once the subgrids are divided, there are no discontinuous operators
that block the flow of the gradient. Since the optimization only takes
place at the subgrid level, the gradients do not need to be propagated
to the full grid and hence the discontinuity at subgrid division does
not affect optimization. Therefore, computing the gradients for the
subgrids is as simple as full-resolution differentiable fluid simula-
tions.

In subgrid optimization, the up-sampled bulk forces are fixed and
serve as a warm start solution. We optimize a series of local correc-
tion forces that refine the simulated state on top of the bulk forces.

Algorithm 1. Subgrid optimization

1: Given bulk forces f̂, smoke ŝ, velocity û, and pressure p̂
2: for se ∈ 1 to NSE do
3: for i ∈ randomize (subgrids) do
4: s̄i, ūi, p̄i = GetSubgrid (ŝ, û, p̂) � Section 3.2
5: f̄i = Optimize (s∗,i, s̄i, ūi, p̄i,NE)
6: f̄ = Concat f̄1..m � Concatenate into full resolution
7: ŝ, û, p̂ = Simulate (s, u, f̄)
8: return ŝ, û, f̄

Empirically, this initialization scheme results in a more stable con-
vergence and better results compared to directly updating the up-
sampled bulk forces.

A naive way of optimizing subgrids is to optimize each subgrid
individually and stitch the optimized subgrids together; however,
with this implementation, each subgrid will not have visibility to
their adjacent subgrids’ updates. This will result in discontinuous
stitched simulated states, and re-simulating using the stitched forces
will result in states further away from the target keyframe and vi-
sual artifacts.

We overcome this by iteratively optimizing the subgrids in se-
ries in a randomized order, as shown in Figure 2 part (b). After a
subgrid is optimized for a user-specified amount of subgrid epochs
NE , a global re-simulation takes place to update the bulk grids. By
re-simulating, the bulk grid will be updated, and subsequent sub-
grid optimizations will have new padded regions for advection and
interior boundaries for pressure. After all subgrids are optimized,
this process takes place repeatedly for a user-controlled super-epoch
number of times NSE . This process is described in Algorithm 1. In
practice, by tuning the epoch, super-epoch and optimization step
size hyperparameters, the repeated looping optimization leads to
global quality improvement. Experimentally, the choice of the sub-
grid optimization ordering does not affect the optimization result.
Section 4.5 demonstrates there is negligible difference when the
subgrids are optimized in random order, in-order, or by parity (odd
grids first, then even).

With our approach, each subgrid is optimized for a total ofNsub =
NSE × NE iterations, and the combination of {NSE ,NE} determines
the trade-off between quality and runtime. Given the same number
of total iterations for each subgrid, smaller NE will result in more
re-simulations, and hence the locally-updated information will be
more frequently propagated to other subgrids, thus resulting in bet-
ter optimization quality; however, the runtime will increase linearly
as NSE increases due to the additional re-simulations. On the other
hand, larger NE will result in reduced runtime, but the information
between each subgrid will be less frequently propagated, resulting
in worse training quality. In the extreme case where NSE = 1, our
algorithm is equivalent to the naive approach described above. We
illustrate how settings of super-epochs and epochs can affect run-
time and optimization quality in Section 4.7.2.

To reduce memory consumption, we can optimize each subgrid
separately, hence only requiring computation graph construction

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Kong et al. / Hierarchical-Diff-Fluid 7 of 16

Figure 5: Hierarchical subgrid optimization. Optimization takes
place at the leaf subgrids. After each subgrid is optimized, it is
stitched to the parent subgrid and the parent subgrid re-simulates
to propagate the changes.

Algorithm 2. Recursive subgrid optimization

1: Given bulk forces f̂, smoke ŝ, velocity û, and pressure p̂
2: for i ∈ randomize (subgrids) do
3: s̄i, ūi, p̄i = Subdivide ŝ, û, p̂
4: if leaf node level then
5: f̄i = Optimize (s∗,i, s̄i, ūi, p̄i,NE) � Section 3.3
6: else
7: f̄i = Recurse (s̄i, ūi, p̄i)
8: f̄ = Stitch f̄1..4

9: ŝ, û, p̂ = Simulate (s, u, f̄)
10: return ŝ, û, f̄

and storage for a (nx/2, ny/2) grid setting. While a re-simulation
at full resolution is needed, no computation graph is required.

3.4. Cascade Optimization

To further reduce memory consumption, the iterative divide-and-
conquer-style method can be applied at multiple levels recursively.
For each level l = 1, 2, . . . , the subgrid optimizations will operate
on grids of resolution (nx/2l, ny/2l).

For the bulk optimization, the down-sample factor will be ad-
justed based on the level, such that k ≥ 2l . For subgrid optimiza-
tion, the full resolution grid is divided into 4l subgrids, and the
optimization takes place at the lowest level leaf nodes in a depth-
first order, as illustrated in Figure 5. After each subgrid is opti-
mized, the parent subgrid is re-simulated to re-generate the bulk in-
formation used for the subsequent subgrid. This recursive subgrid
optimization process is illustrated in Algorithm 2. This algorithm
is then repeated for the user-specified super-epoch NSE amount of
iterations.

4. Experiments and Results

We implement our method in Python and PyTorch [PGM*19].
For simplicity, the pressure projection linear system is solved us-
ing the conjugate gradient algorithm without preconditioning. For
optimization, we use the Adam optimizer [KB14] with exponen-
tial optimization step size scheduling with γ = 0.95, and the step

Figure 6: Top left shows the final frame of a plume simulation that
rises due to buoyancy, and top right shows the keyframe target.
First row: applying a series of hand-crafted forces, we can painstak-
ingly attain the target final frame. Second row: without any blurring
or down-sampling, a full-resolution optimization cannot escape a
local minima, failing to match the target. Third row: our method
automatically optimizes for forces that result in a closer target
match.

sizes are adjusted based on each experiment. All experiments are
run on a compute farm server with Intel(R) Xeon(R) W-2135 CPU
and NVIDIA RTX A4000 GPU with VRAM size 16 GB. All data
are created on the CPU by default. Relevant grids, down-sampled
grids, and sub-grids are transferred from the CPU to the GPU dur-
ing simulation and optimization, and moved back to the CPU after-
wards.

4.1. Rising Plume Final Frame Matching

We first validate our method using a single final keyframe match-
ing example in 1024 × 1024 resolution. In Figure 6, the left im-
age shows a smoke simulation given an inflow injection and buoy-
ancy forces, without any other external forces. The simulation rolls
out for 30 frames with a time step size of 0.5. Under the same
simulation settings, by applying a series of hand-crafted ground-
truth forces, we generate a target frame on the right, with a tar-
get roll-out simulation at the top. The optimization goal is to find
a space-time varying force field, such that when applied to the sim-
ulation, the final frame converges to the target keyframe as much as
possible.

We define our baseline as the full resolution optimization using
differentiable simulation, as described in Section 2.3. The result
of our baseline is shown in the second row in Figure 6. Due to the

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 16 Kong et al. / Hierarchical-Diff-Fluid

Figure 7: Loss plot for the plume example at resolution 10242. We
visualize the density mean squared error, instead of the full energy
function�. While the baseline fails to optimize after 200 epochs, our
method decreases the loss significantly. For our method, the first 100
epochs correspond to the down-sampled bulk optimization. Later
100 epochs correspond to the subgrid optimization.

high resolution and hence degrees of freedom, the full-resolution
optimization is very sensitive to perturbations to the step size
and easily gets stuck at local minima, resulting in unsatisfactory
optimization outcome, with Structural Similarity Index Measure
(SSIM) [WBSS04] score 0.7748. In the figure, we showcase the
best result we could obtain by repeatedly tuning hyper-parameters.
On the other hand, our method does not suffer from this issue thanks
to the bulk down-sample optimization process. In this example, the
bulk optimization first down-samples by a factor of k = 8 to opti-
mize the bulk forces for Nbulk = 100 epochs with optimization step
size αbulk = 3 × 10−2. This helps reduce the degrees of freedom,
which not only guides the optimization in the correct direction
but also makes our method more stable. The bulk optimization
produces an SSIM score of 0.7991. Then, continuing from the bulk
state, we carry out subgrid optimization at division level l = 1 for
NE = 4 and NSE = 25 epochs and step size αsub = 10−3 to further
improves the optimized result, and eventually produces the final
row in the figure, with SSIM score 0.8093.

Figure 7 compares the loss between the baseline at full resolu-
tion and our method. The bulk loss is measured at each epoch by
up-sampling and re-simulating at the full resolution. Similarly, the
subgrid loss is measured after each super-epoch, by stitching the op-
timized force and re-simulating at the full resolution. For a clearer
comparison and visualization, instead of the objective function �,
we plot the pixel-wise mean squared error of the density s and do
not include the penalty losses. We first observe that the loss of the
baseline optimization aligns with its visual result. Due to the high
degrees of freedom, the optimization oscillates and performs poorly.
On the other hand, the bulk optimization in the first 100 epoch is able
to quickly reduce the loss and optimize the bulk motion of the fluid.
Subsequently, by dividing the grid into subgrids and iteratively re-
fining each one of them, the loss is able to decrease further.

We note that the subgrid optimization loss curve oscillates be-
cause the re-simulation will propagate local forces to the global do-
main. Since fluid simulation is highly non-linear, a force that im-

Figure 8: The memory consumption of optimization against reso-
lutions. Missing data points are due to simulation solves failing to
converge. Our method outperforms gradient checkpoinitng, and the
reduction in memory increases as subgrid division level increases.

proves a local region may not propagate the same effect to other sub-
grids.

4.2. Benchmark and Stress Test

Table 1 shows the memory consumption and runtime cost when run-
ning the experiment described above under different resolutions. We
make comparisons against PhiFlow’s implementation [HTK19],
our baseline implementation at full resolution, gradient checkpoint-
ing [CXZG16] at full resolution, and our subgrid optimization tech-
niques with division levels 1 and 2. Across all these implementa-
tions, the pressure projection step uses the conjugate gradient solver
with the same maximum iteration count of 500, and the same rela-
tive tolerance of 10−2.

We acknowledge that PhiFlow supports different AutoDiff
frameworks, and more complex and optimizable boundary condi-
tions, and hence the heavier overhead may not make a fair compar-
ison. We also note that PhiFlow supports just-in-time (JIT) com-
pilation, which if enabled, would greatly improve the runtime per-
formances; however, we did not implement JIT compilation as our
main goal focused on reducing the memory bottleneck. With gra-
dient checkpointing, we checkpoint every simulation time step. For
simulation with T time steps, this checkpointing scheme will re-
duce the memory consumption of computing the gradient toO(

√
T)

when computing the gradient. While the simulation and gradient
computation (hence optimization) results are the exact same as
that of the full resolution, the runtime will increase due to the re-
computations between each checkpoint [CXZG16]. Moreover, this
checkpointing scheme is not invariant to resolution, and hence the
memory consumption will still increase exponentially as the simu-
lation resolution increases.

Figure 8 shows the memory consumption for optimizing with
different methods for 100 epochs. We demonstrate that our sub-
grid method outperforms gradient checkpointing, and reduces
the memory consumption compared to full resolution at least by
half. Increasing the subgrid recursion level also leads to lower

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Kong et al. / Hierarchical-Diff-Fluid 9 of 16

Table 1: Memory and runtime for optimizing the plume rising scene using different optimization schemes for different resolutions. The bolded data ran out of
memory and was re-run on a Quadro RTX 8000 GPU with 48 GB VRAM for validation (runtime not reported due to hardware difference).

PhiFlow Full Optim. Checkpoint Level 1 Level 2

Res. Mem. (GB) Time (h:m) Mem. (GB) Time (h:m) Mem. (GB) Time (h:m) Mem. (GB) Time (h:m) Mem. (GB) Time (h:m)

128 0.22 1:05 0.06 0:16 0.05 0:40 0.02 0:46 0.01 1:04
256 0.86 1:13 0.25 0:26 0.19 1:01 0.06 1:06 0.03 1:30
512 3.44 1:29 0.97 0:30 0.72 1:05 0.26 1:24 0.12 1:47
1024 13.75 1:58 3.27 0:38 2.86 1:08 1.05 1:33 0.51 2:17
2048 OOM \ 13.06 1:48 11.45 2:44 4.50 2:59 2.65 3:58
3072 OOM \ 29.38 \ 19.21 \ 9.58 5:06 5.15 5:46

Figure 9: Equal 100 epoch runtime against resolution. Missing
data points are due to out-of-memory on consumer-level graphics
card or failed simulation convergence. As resolution increases, the
runtime increases for all implementations. Our method provides a
new trade-off between memory consumption and optimization run-
time.

memory consumption, but the memory saving diminishes in a
logarithmic fashion. The diminishing return is expected since the
decrease in degrees of freedom is logarithmic, and the overhead
for storing simulation states at high resolution is also not negli-
gible. Note that for resolutions above 2048 × 2048, the PhiFlow
forward simulation fails to converge, and hence is not included
in our reporting. At resolution 3072 × 3072, both full-resolution
optimization and gradient checkpointing run out of memory. Our
method successfully reduces the memory consumption: at level
one recursion, our method uses 32% of the memory (9.58 GB) of a
full-resolution optimization and 50% of the gradient checkpointing
option. With level two recursion, memory usage is further reduced
to 5.15 GB (18% and 27% compared to full resolution and gradient
checkpointing).

Figure 9 shows the optimization runtime using different methods
for 100 epochs. For our subgrid approach, we consider one full-
resolution epoch to be equivalent to the combination of one bulk
epoch and one epoch for each subgrid. This figure highlights the
fact that our method offers a new trade-off between memory con-
sumption and optimization runtime. Another factor that contributes

to the runtime is the combination of the number of super-epochs and
epochs, as detailed in Section 4.7.2

4.3. ‘FLUID’ Letter Morphing

We compare our multi-resolution hierarchical approach with the
work of Pan and Manocha [PM17], which splits the solution of the
optimization into two objectives. We recreate the ‘FLUID’ exam-
ple and provide a visual and performance comparison. Each let-
ter is optimized separately, and we optimize on both the original
128 × 128 resolution and a larger 256 × 256 resolution for 40 time
steps. The bulk optimization takes k = 2 and runs for Nbulk = 100
iterations with αbulk = 10−2. The subgrid optimization divides the
domain with l = 1, and takes NSE = 50 and NE = 2, and α = 10−3.

Figure 10 visually compares the result between our method and
Pan and Manocha [PM17]. Our method produces fewer artifacts and
matches the FLUID target better. As for memory and performance,
Pan and Manocha [PM17] reported to have taken 0.06GB with 0.25
h runtime. For the same 128 × 128 resolution, our method takes
0.02GB with 2.68 h runtime, and for the higher 256 × 256 reso-
lution, our method takes 0.08GB with 4.08 h runtime.

4.4. Multi-Keyframe Animation

We apply our method to multiple target keyframes, illustrating how
the subgrid optimization can optimize local forces that improve the
bulk optimized result. In Figure 11, the fluid morphs between 5 let-
ter keyframes ‘GRAPH’ over 100 frames on a 256 × 256 domain.
The bulk optimization uses Nbulk = 200 epochs with a step size of
αbulk = 10−3, and each subgrid optimization usesNsub = 100 epochs
αsub = 10−4. The optimization converges, correctly matching the
desired keyframes. We visualize the bulk and subgrid loss plots,
which indicate that the subgrid optimization reduces the loss sig-
nificantly after the bulk optimization converges. We also show the
keyframes for the final letters ‘H’ after both bulk and subgrid op-
timization converges. Qualitatively, we observe that the converged
bulk result correctly produces the general shape of the letters, but the
local details such as the edges of the letters are chaotic and irregu-
lar. The subgrid optimization, by contrast, successfully optimizes
the local forces that enhance the bulk initial results. Consequently,
subgrid-refined letters have sharper edges and more distinctly de-
fined shapes compared to the bulk-only results.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 16 Kong et al. / Hierarchical-Diff-Fluid

Figure 10: We compare our method (left two) against the method of Pan andManocha [PM17] (right) on the FLUID example. We demonstrate
results at both resolutions of 1282 and 2562. Each row shows the resulting simulation at frames 0, 20, 30, 35, 40 respectively.

Figure 11: The optimized forces morph the simulated smoke into
‘GRAPH’ by defining multiple letter keyframes. The top row is the
optimized simulation rollout. Every other image is the reconstruc-
tion of a target letter. At the bottom, we show the loss plot and the
final ‘H’ letter after bulk and subgrid optimization finishes.

4.5. Latte Art

We provide an example of keyframe morphing: given a Latte art im-
age as a target keyframe, starting from a circular initial smoke state,
the optimization optimizes a series of forces that drive the density
towards the latte art design. The simulation runs at 512 × 512 for
30 time steps with a step size of 0.5s. The bulk optimization down-
samples the grid with a factor of k = 2 and optimizes with a step
size of αbulk = 0.05 for Nbulk = 200 epochs. Then the subgrid op-
timization takes place at recursion level l = 1, and each subgrid is
optimized for Nsub = 200 epochs with a step size of αsub = 0.0001.
Figure 12 shows the result rendered in a coffee mug.

Figure 13 shows the loss curve of the 2D latte art morph opti-
mization. We experiment with different subgrid optimization order-
ing described in Section 3.3. Continuing from the bulk optimization,
we investigate alternative subgrid ordering schedules, including in-
order and parity (odd followed by even) ordering, with step size

Figure 12: A series of forces are optimized to morph a circular disk
into a latte art. The resultant 2D simulation is then rendered onto a
coffee mug to create a latte art effect.

Figure 13: The latte art morph loss curve with different subgrid op-
timization ordering scheme, including random order, in-order and
parity (even grids first, then odd).

α = 10−3 and NE = 4, NSE = 50 iterations. The result shows that
the ordering of the subgrid optimization does not have a significant
effect on the optimization result.

4.6. Looping Fluid Simulation

Looping fluid simulation is a long-standing challenge in fields such
as visual effects and game development. Although recent advances
have been made in looping simulations for thin shells and N-body
systems [JWLC23], cyclic fluid simulation still remains an open

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Kong et al. / Hierarchical-Diff-Fluid 11 of 16

Figure 14: Looping simulations with external force optimization
and 2-level subgrids, matching the final and initial frames.

challenge. We apply the fluid control framework that we introduced
in this paper to tackle this problem by framing it as a keyframe con-
trol problem. In this application, arbitrary sinks are created to dis-
sipate the smoke so that injecting the smoke does not fill the scene.
First, we run the forward simulation with random forces over a pe-
riod of time. Then, we take one frame of the simulation and des-
ignate it as the start frame of the looping simulation. The goal of
the control problem is to compute forces throughout time, such that
continuing the simulation from the start frame will result in the end
frame as close to the start frame as possible. On top of the smoke
density mean squared error loss, we also impose a velocity mean
squared error loss in our energy function �, such that the animation
loops in a smooth motion.

With this formulation, we solve the control problem with our sub-
grid division at 256 × 256 for 30 time steps with time step of 0.5 s.
We use two levels of subgrid division, with a bulk optimization step
size of αbulk = 0.01 and Nbulk = 100 epochs. The subgrid optimiza-
tion recurses 2 levels, with each subgrid optimized for Nsub = 100
epochs with a step size of αsub = 0.001 (see Figure 14). Both the
bulk and subgrid optimizations converge to a simulation end state
steered towards the target.

4.7. Design Choice Analysis

4.7.1. Subgrid Division Level

We study the effect of subgrid division level l on the optimization
using our latte morph optimization as an example. From the same
bulk optimization checkpoint, we optimize using level 1 and level
2 subgrid divisions using the same step size α = 10−3 and NE = 4,
NSE = 50. Figure 15 demonstrates the loss graph of the optimiza-
tions. We observe that while both division levels are able to signif-
icantly decrease the loss further, level 1 subgrid division is able to
reduce the loss faster compared to that of level 2. Combining this ob-
servation with Figure 8 and Figure 9, we conclude that L1 achieves
higher accuracy and lower runtime, though L2 consumes less mem-
ory. For this reason, level 1 should be used if there is enough mem-
ory.

4.7.2. Epoch and Super Epoch Benchmark

One important hyper-parameter in our algorithm is the combination
of subgrid epochs NE and super-epochs NSE . As described in Sec-
tion 3.3, even though the combination of NE and NSE does not affect
the memory consumption of our algorithm, it determines the trade-
off between runtime and quality. Given a fixed amount of total num-
ber of epochs per subgrid N = NE × NSE , a smaller NE larger NSE

Figure 15: Optimizing the subgrid using level 1 and level 2 di-
vision, continuing from the same bulk checkpoint in the latte art
morph. Under the same number of epochs and step size, level 1 op-
timization results in lower loss.

Table 2: Epoch and super-epoch combination comparison. Each subgrid is
optimized for 100 epochs in total, hence the optimization runtime remains
mostly constant; however, the super-epoch and epoch combination deter-
mines the number of re-simulations. More re-simulations result in a longer
total runtime. More re-simulations usually lead to lower converged loss.

NSE × NE

Total
runtime
(h:m)

Optimization
runtime (h:m)

Re-simulation
runtime (h:m)

Re-simulation
Loss

1 × 100 0:19 0:18 0:01 0.03597
2 × 50 0:21 0:18 0:03 0.03581
4 × 25 0:24 0:18 0:06 0.03559
5 × 20 0:26 0:18 0:08 0.03552
10 × 10 0:33 0:18 0:15 0.03479
20 × 5 0:49 0:18 0:31 0.03486
25 × 4 0:57 0:18 0:39 0.03310
50 × 2 1:36 0:18 1:18 0.03361
100 × 1 2:56 0:18 2:38 0.03381

combination indicates more re-simulations, leading to a higher run-
time. In this case, the information is exchanged and updated more
frequently between subgrids, usually leading to better optimization
quality. Conversely, a larger NE and smaller NSE combination will
result in faster training speed due to the reduced re-simulations, but
worse results. In this experiment, we investigate the relationship be-
tween the two hyper-parameters.

For the test scene in Section 4.1, after 100 iterations of down-
sampled bulk optimization, we continue subgrid optimization for
Nsub = 100 iterations at step size αsub = 10−4, testing multiple NE
and NSE combinations; we report runtime and final loss for each
combination in Table 2. We observe that optimization runtime for
each super-epoch and epoch combination remains constant, and as
NSE increases the number of re-simulations increases (and thus the
total runtime). Also note that, at lowNSE , the loss is higher due to re-
duced information propagation; however, as NSE increases, the loss
decreases and reaches a minimum with NSE = 25 and NE = 4. Fur-
ther increasing NSE does not further decrease the loss, and the losses
are still lower compared than NSE < 25.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 16 Kong et al. / Hierarchical-Diff-Fluid

Figure 16: Top row shows our result after bulk optimization (left)
and subgrid optimization (middle), compared against the baseline
method (right) at resolution 1283 for 40 time steps. Bottom left
shows our method at resolution 2563 for 40 time steps. Baseline
fails to optimize due to out of memory error (exceeds 40GB).

4.8. 3D Implementation

We demonstrate through a morphing example that our method de-
scribed in Section 3 extends to 3D. We use test scenes with resolu-
tion of 1283 and 2563 for 40 frames. Starting from a sphere, the goal
is to optimize a series of dense force fields that morph the smoke into
the target shape. The bulk optimization down-samples with k = 2,
and uses Nbulk = 100 iterations with step size of αbulk = 10−3. The
subgrid optimization is done with l = 1, which divides the sim-
ulation domain into 8 subgrids, with NSE = 50 and NE = 4 and
αsub = 10−4. As seen in Figure 1, our method optimizes a series of
forces that leads to a continuous simulation that eventually reaches
the armadillo target.

Figure 16 visually compares the optimized result from bulk,
subgrid and baseline optimizations at both resolutions. The base-
line optimization runs for N = 170 epochs and uses step size α =
10−2. We observe the bulk optimization generates global forces
that morphs the smoke into the general shape; however, local de-
tails such as the claws are of low quality due to the low resolu-
tion of the force field. Continuing from the bulk, the subgrid op-
timization refines locally and produces better results with finer de-
tails. At resolution 1283, the baseline method produces a better re-
sult, but takes 14.22GB of memory and was optimized for 1.1 h,
whereas our method takes only 2.10GB and was optimized for 4.8
h. At resolution 2563, the baseline method fails due to out of mem-
ory even on a more powerful Quadro RTX 8000 GPU with 48GB
of VRAM; however, our method is still able to converge success-
fully with the consumption of 15.90GB of VRAM with optimization
time 31.4 h.

Figure 17 demonstrates the optimization loss curve correspond-
ing to the resolution 1283. Aligned with the visual demonstration,
the bulk optimization decreases the loss by optimizing the low-
resolution forces, and the subgrid optimization decreases the loss
further by optimizing at high resolution locally. Compared to the

Figure 17: Loss curve for morphing from a sphere to a 3D ar-
madillo at resolution 1283.

Figure 18: The memory consumption of the armadillo morph using
different optimization methods at several resolutions. The baseline
full resolution optimization fails at resolution 2563, even on a more
powerful GPU with 40GB VRAM.

baseline of optimizing at full resolution, the quality does not de-
grade significantly. Figures 18 and 19 showcase the memory con-
sumption and runtime with respect to resolution. Similar to the 2D
result, in trading runtime and making small compromises in quality,
we reduce the memory consumption drastically.

5. Conclusion and Discussion

We presented a hierarchical splitting approach to reduce the memory
consumption of differentiable fluid simulation. We demonstrated
that our splitting method requires significantly less memory and
achieves comparable quality to previous methods, at the expense
of additional runtime. Although our method saves memory by trad-
ing runtime, it enables optimizations on large scenes where full-
resolution optimization was unfeasible due to the memory bottle-
neck. In terms of optimization quality, in some cases, our method
results in less accuracy compared to the baseline full-resolution op-
timization, and in other cases, our bulk optimization helps reduce
the degrees of freedom and facilitates escaping the local minima,

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Kong et al. / Hierarchical-Diff-Fluid 13 of 16

Figure 19: The runtime of optimizing of the armadillo morph for
optimizing 100 epochs at different resolution. The full resolution op-
timization at 2563 resolution is not reported due to out of memory.

resulting in better quality. Our work addresses the memory bottle-
neck and opens many exciting avenues.

Firstly, during subgrid optimization, the re-simulation after each
subgrid epoch is necessary to propagate the local forces to the
other subgrids, leading to an additional cost in runtime. This is
mainly caused by the fact that during simulation and optimization,
each subgrid has no knowledge of the neighbouring subgrids’ states
such as density or forces. A possible direction of research is to
improve the coupling between subgrids. Such improvements can
be done at the simulation level by coupling with not only pres-
sure, but also velocity, density and forces. Another possible ap-
proach is improving at the loss level by injecting forces information
from neighbouring subgrids through better penalty terms. Explor-
ing decomposition strategies beyond spatial partitioning, such as
frequency-domain approaches inspired by octave-based represen-
tations in wave simulations, is also a promising direction for future
research.

Secondly, our experiments currently only support box-like do-
mains with easily-described slip boundary conditions. Supporting
a wider range of boundary conditions and obstacles into the scene
requires extra engineering and introduces an added layer of com-
plexity due to the grid-based data structure in PyTorch. One fu-
ture avenue of work is to support more general scenes and fluid-
obstacle interactions.

Thirdly, in this work, we focused our attention on optimizing
space-time varying forces that drive fluid motion; however, the ca-
pabilities of differentiable simulation extend far beyond this appli-
cation. We believe additional parameters such as inflow location,
fluid density, temperature, and even obstacle shape, could be op-
timized by extending this framework. Simpler scalar parameters
such as fluid density can be optimized by treating them as input
parameters to the differentiable simulator and taking gradients of
the loss with respect to them. Optimizing inflow location and ob-
stacle shapes would require further attention to the subgrid discon-
tinuities; and non-axis-aligned obstacles present another layer of

challenges. These challenges present a broader scope for further
exploration.

Finally, a main trade-off our method makes is the increased run-
time. This is due to a multitude of factors. Generalizing our subgrid
division scheme from 2 × 2 to m× m, for level l division, would
require mdl optimizations to take place in series. As shown in Sec-
tion 4.7.2, depending on the combination between the super-epoch
and epoch parameters, the re-simulation runtime is not negligible.
One future work direction to address this problem is to come up with
better heuristics to determine the balance between the super-epoch
and subgrid epoch combination.

Acknowledgements

The authors have nothing to report.

Conflict of Interest

None of the authors has a conflict of interest to disclose.

References

[AAB*16] Abadi M., Agarwal A., Barham P., Brevdo E.,
Chen Z., Citro C., Corrado G. S., Davis A., Dean J., Devin
M., Ghemawat S., Goodfellow I., Harp A., Irving G., Is-
ard M., Jia Y., Jozefowicz R., Kaiser L., Kudlur M., Lev-
enberg J., Mane D., Monga R., Moore S., Murray D.,
Olah C., Schuster M., Shlens J., Steiner B., Sutskever I.,
Talwar K., Tucker P., Vanhoucke V., Vasudevan V., Vie-
gas F., Vinyals O., Warden P., Wattenberg M., Wicke M.,
Yu Y., Zheng X.: TensorFlow: Large-scale machine learning
on heterogeneous distributed systems, Mar. 2016. arXiv:1603.
04467.

[BPRS18] Baydin A., Pearlmutter B., Radul A., Siskind J.:
Automatic differentiation in machine learning: A survey. Journal
of Machine Learning Research 18 (Apr. 2018), 1–43. https://doi.
org/10.48550/arXiv.1502.05767.

[BR86] Brackbill J. U., Ruppel H. M.: FLIP: A method for adap-
tively zoned, particle-in-cell calculations of fluid flows in two di-
mensions. Journal of Computational Physics 65, 2 (Aug. 1986),
314–343. https://doi.org/10.1016/0021-9991(86)90211-1.

[Bri15] Bridson R.: Fluid Simulation for Computer Graphics (2nd
edition). AK Peters/CRC Press, New York, Sept. 2015. https://
doi.org/10.1201/9781315266008.

[CFL28] Courant R., Friedrichs K., Lewy H.: Über die
partiellen Differenzengleichungen der mathematischen Physik.
Mathematische Annalen 100, 1 (Dec. 1928), 32–74. https://doi.
org/10.1007/BF01448839.

[CLL24] Chen Y., Levin D., Langlois T.: Fluid control with
Laplacian eigenfunctions. In ACM SIGGRAPH 2024 Confer-
ence Papers (New York, NY, USA, July 2024), SIGGRAPH ’24,

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.48550/arXiv.1502.05767
https://doi.org/10.48550/arXiv.1502.05767
https://doi.org/10.1016/0021-9991(86)90211-1
https://doi.org/10.1201/9781315266008
https://doi.org/10.1201/9781315266008
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839

14 of 16 Kong et al. / Hierarchical-Diff-Fluid

Association for Computing Machinery, pp. 1–11. https://doi.org/
10.1145/3641519.3657468.

[CXZG16] Chen T., Xu B., Zhang C., Guestrin C.: Train-
ing Deep Nets with Sublinear Memory Cost, Apr. 2016.
arXiv:1604.06174.

[CZY17] Chu J., Zafar N. B., Yang X.: A Schur complement pre-
conditioner for scalable parallel fluid simulation. ACM Transac-
tions on Graphics 36, 5 (July 2017), 163:1–163:11. https://doi.
org/10.1145/3092818.

[dSA*18] de Avila Belbute-Peres F., Smith K., Allen K.,
Tenenbaum J., Kolter J. Z.: End-to-end differentiable physics
for learning and control. In Advances in Neural Information Pro-
cessing Systems (Montreal, Canada, 2018), Bengio S., Wallach
H., Larochelle H., Grauman K., Cesa-Bianchi N., Garnett R.
(Eds.) (vol. 31), Curran Associates, Inc., Red Hook, New York.

[FL04] Fattal R., Lischinski D.: Target-driven smoke animation.
ACM Transactions on Graphics. 23, 3 (Aug. 2004), 441–448.
https://doi.org/10.1145/1015706.1015743.

[FM97a] Foster N., Metaxas D.: Controlling fluid animation.
In Proceedings Computer Graphics International (Hasselt and
Diepenbeek, Belgium, June 1997), IEEE Computer Society
Press, pp. 178–188. https://doi.org/10.1109/cgi.1997.601299.

[FM97b] Foster N., Metaxas D.: Modeling the motion of a hot,
turbulent gas. In Proceedings of the 24th Annual Conference
on Computer Graphics and Interactive Techniques (USA, Aug.
1997), SIGGRAPH ’97, ACM Press/Addison-Wesley Publishing
Co., pp. 181–188. https://doi.org/10.1145/258734.258838.

[GNS*12] Golas A., Narain R., Sewall J., Krajcevski P.,
Dubey P., Lin M.: Large-scale fluid simulation using velocity-
vorticity domain decomposition. ACM Transactions on Graph-
ics. 31, 6 (Nov. 2012), 148:1–148:9. https://doi.org/10.1145/
2366145.2366167.

[HAL*19] Hu Y., Anderson L., Li T.-M., Sun Q., Carr N.,
Ragan-Kelley J., Durand F.: DiffTaichi: Differentiable pro-
gramming for physical simulation. ArXiv (Sept. 2019). https:
//doi.org/10.48550/arXiv.1910.00935.

[Har62] Harlow F. H.: The Particle-in-Cell Method for Nu-
merical Solution of Problems in Fluid Dynamics. Tech. Rep.
LADC-5288, Los Alamos National Laboratory (LANL), Los
Alamos, NM (United States), Mar. 1962. https://doi.org/10.2172/
4769185.

[HLM*19] He X., Li J., Mader C. A., Yildirim A., Martins J. R.
R. A.: Robust aerodynamic shape optimization—From a circle
to an airfoil. Aerospace Science and Technology 87 (Apr. 2019),
48–61. https://doi.org/10.1016/j.ast.2019.01.051.

[HTK19] Holl P., Thuerey N., Koltun V.: Learning to control
pdes with differentiable physics. In International Conference on
Learning Representations (Addis Ababa, Ethiopia, Sept. 2019).
https://doi.org/10.48550/arXiv.2001.07457.

[HW65] Harlow F. H., Welch J. E.: Numerical calculation of
time-dependent viscous incompressible flow of fluid with free
surface. Physics of Fluids 8, 12 (1965), 2182. https://doi.org/10.
1063/1.1761178.

[JMG*21] Jatavallabhula K. M., Macklin M., Golemo F.,
Voleti V., Petrini L., Weiss M., Considine B., Parent-
Levesque J., Xie K., Erleben K., Paull L., Shkurti
F., Nowrouzezahrai D., Fidler S.: gradsim: Differen-
tiable simulation for system identification and visuomo-
tor control. International Conference on Learning Repre-
sentations (ICLR) (2021). https://doi.org/10.48550/arXiv.2104.
02646.

[JWLC23] Jia S., Wang S., Li T.-M., Chern A.: Physical cyclic
animations. Proceedings of the ACM on Computer Graphics and
Interactive Techniques 6, 3 (Aug. 2023), 1–18. https://doi.org/10.
1145/3606938.

[KB14] Kingma D. P., Ba J.: Adam: A method for stochastic op-
timization. CoRR (Dec. 2014). https://doi.org/10.48550/arXiv.
1412.6980.

[KY00] Kim Y. Y., Yoon G. H.: Multi-resolution multi-scale topol-
ogy optimization—A new paradigm. International Journal of
Solids and Structures 37, 39 (Sept. 2000), 5529–5559. https:
//doi.org/10.1016/S0020-7683(99)00251-6.

[LXY*23] Li Z., Xu Q., Ye X., Ren B., Liu L.: DiffFR:
Differentiable SPH-based fluid-rigid coupling for rigid
body control. ACM Transaction on Graphics. 42, 6
(Dec. 2023), 179:1–179:17. https://doi.org/10.1145/
3618318.

[MCG03] Müller M., Charypar D., Gross M.: Particle-based
fluid simulation for interactive applications. InProceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (Goslar, DEU, July 2003), SCA ’03, Eurographics As-
sociation, pp. 154–159.

[MM13] Madill J., Mould D.: Target particle control of smoke
simulation. In Proceedings of Graphics Interface 2013 (CAN,
May 2013), GI ’13, Canadian Information Processing Society,
pp. 125–132.

[MP04] Mohammadi B., Pironneau O.: Shape optimization in
fluid mechanics. Annual Review of Fluid Mechanics 36, Volume
36, 2004 (Jan. 2004), 255–279. https://doi.org/10.1146/annurev.
fluid.36.050802.121926.

[MSQ*18] Mashayekhi O., Shah C., Qu H., Lim A., Levis P.:
Automatically distributing Eulerian and hybrid fluid simulations
in the cloud. ACM Transactions on Graphics 37 (June 2018), 1–
14. https://doi.org/10.1145/3173551.

[MST10] McAdams A., Sifakis E., Teran J.: A parallel multigrid
Poisson solver for fluids simulation on large grids. In Proceed-
ings of the 2010 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Goslar, DEU, July 2010), SCA ’10, Euro-
graphics Association, pp. 65–74.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1145/3641519.3657468
https://doi.org/10.1145/3641519.3657468
https://doi.org/10.1145/3092818
https://doi.org/10.1145/3092818
https://doi.org/10.1145/1015706.1015743
https://doi.org/10.1109/cgi.1997.601299
https://doi.org/10.1145/258734.258838
https://doi.org/10.1145/2366145.2366167
https://doi.org/10.1145/2366145.2366167
https://doi.org/10.48550/arXiv.1910.00935
https://doi.org/10.48550/arXiv.1910.00935
https://doi.org/10.2172/4769185
https://doi.org/10.2172/4769185
https://doi.org/10.1016/j.ast.2019.01.051
https://doi.org/10.48550/arXiv.2001.07457
https://doi.org/10.1063/1.1761178
https://doi.org/10.1063/1.1761178
https://doi.org/10.48550/arXiv.2104.02646
https://doi.org/10.48550/arXiv.2104.02646
https://doi.org/10.1145/3606938
https://doi.org/10.1145/3606938
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/S0020-7683(99)00251-6
https://doi.org/10.1016/S0020-7683(99)00251-6
https://doi.org/10.1145/3618318
https://doi.org/10.1145/3618318
https://doi.org/10.1146/annurev.fluid.36.050802.121926
https://doi.org/10.1146/annurev.fluid.36.050802.121926
https://doi.org/10.1145/3173551

Kong et al. / Hierarchical-Diff-Fluid 15 of 16

[MTPS04] McNamara A., Treuille A., Popović Z., Stam J.:
Fluid control using the adjoint method. ACM Transactions on
Graphics 23, 3 (Aug. 2004), 449–456. https://doi.org/10.1145/
1015706.1015744.

[OFEH18] Oborn J., Flynn S., Egbert P., Holladay S.: Time-
reversed art directable smoke simulation. In Proceedings of the
39th Annual European Association for Computer Graphics Con-
ference: Short Papers (Goslar, DEU, Apr. 2018), EG, Eurograph-
ics Association, pp. 1–4.

[PGM*19] Paszke A., Gross S., Massa F., Lerer A., Bradbury
J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L.,
Desmaison A., Kopf A., Yang E., DeVito Z., Raison M., Te-
jani A., Chilamkurthy S., Steiner B., Fang L., Bai J., Chin-
tala S.: PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing
Systems (Red Hook, NY, USA, 2019), vol. 32, Curran Associates,
Inc. https://doi.org/10.48550/arXiv.1912.01703.

[PM17] Pan Z., Manocha D.: Efficient solver for spacetime con-
trol of smoke. ACM Transactions on Graphics 36, 5 (July 2017),
162:1–162:13. https://doi.org/10.1145/3016963.

[RSÖ*22] Rioux-Lavoie D., Sugimoto R., Özdemir T., Shi-
mada N. H., Batty C., Nowrouzezahrai D., Hachisuka T.:
A monte carlo method for fluid simulation. ACM Transactions
on Graphics 41, 6 (Dec. 2022), 1–16. https://doi.org/10.1145/
3550454.3555450.

[RWA21] Reinisch J., Wehrle E., Achleitner J.: Multiresolu-
tion topology optimization of large-deformation path-generation
compliant mechanisms with stress constraints. Applied Sciences
11, 6 (Jan. 2021), 2479. https://doi.org/10.3390/app11062479.

[SBH24] Sugimoto R., Batty C., Hachisuka T.: Velocity-based
Monte Carlo fluids. In ACM SIGGRAPH 2024 Conference Pa-
pers (New York, NY, USA, July 2024), SIGGRAPH ’24, Asso-
ciation for Computing Machinery, pp. 1–11. https://doi.org/10.
1145/3641519.3657405.

[SC20] Schoenholz S. S., Cubuk E. D.: JAX, M.D. a frame-
work for differentiable physics. In Proceedings of the 34th In-
ternational Conference on Neural Information Processing Sys-
tems (Red Hook, NY, USA, Dec. 2020), NIPS’20, Curran As-
sociates Inc., pp. 11428–11441. https://doi.org/10.48550/arXiv.
1912.04232.

[Sch21] Schoentgen A.: Tools for Fluid Simulation Control
in Computer Graphics. Modeling and Simulation. Université
de Poitiers; Université de Montréal (1878-….), 2021. English.
〈NNT: 2021POIT2287〉. 〈tel-03862771〉.

[SPM22] Sivakumaran G., Paquette E., Mould D.: Time Re-
versal and Simulation Merging for Target-Driven Fluid Anima-
tion. In Proceedings of the 15th ACM SIGGRAPH Conference
on Motion, Interaction and Games (New York, NY, USA, Nov.
2022), MIG ’22, Association for Computing Machinery, pp. 1–9.
https://doi.org/10.1145/3561975.3562952.

[Sta99] Stam J.: Stable fluids. In Proceedings of the 26th An-
nual Conference on Computer Graphics and Interactive Tech-
niques (USA, July 1999), SIGGRAPH ’99, ACM Press/Addison-
Wesley Publishing Co., pp. 121–128. https://doi.org/10.1145/
311535.311548.

[TAB*96] Tezduyar T., Aliabadi S., Behr M., Johnson A.,
Kalro V., Litke M.: Flow simulation and high performance
computing. Computational Mechanics 18, 6 (Dec. 1996), 397–
412. https://doi.org/10.1007/BF00350249.

[TACS21] Tang J., Azevedo V., Cordonnier G., Solenthaler
B.: Honey, I shrunk the domain: Frequency-aware force field
reduction for efficient fluids optimization. Computer Graph-
ics Forum 40 (May 2021), 339–353. https://doi.org/10.1111/cgf.
142637.

[THH21] Tang H. S., Haynes R. D., Houzeaux G.: A review
of domain decomposition methods for simulation of fluid flows:
Concepts, algorithms, and applications. Archives of Computa-
tional Methods in Engineering 28, 3 (May 2021), 841–873. https:
//doi.org/10.1007/s11831-019-09394-0.

[TMPS03] Treuille A., McNamara A., Popović Z., Stam J.:
Keyframe control of smoke simulations. ACM Transactions on
Graphics 22, 3 (July 2003), 716–723. https://doi.org/10.1145/
882262.882337.

[UBF*20] Um K., Brand R., Fei Y. R., Holl P., Thuerey N.:
Solver-in-the-loop: Learning from differentiable physics to in-
teract with iterative PDE-solvers. In Proceedings of the 34th In-
ternational Conference on Neural Information Processing Sys-
tems (Red Hook, NY, USA, Dec. 2020), NIPS’20, Curran Asso-
ciates Inc., pp. 6111–6122. https://doi.org/10.48550/arXiv.2007.
00016.

[WBSS04] Wang Z., Bovik A., Sheikh H., Simoncelli E.: Image
quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (Apr. 2004), 600–
612. https://doi.org/10.1109/TIP.2003.819861.

[XZ23] Xu J., Zheng Z.: Gradient-based simulation optimiza-
tion algorithms via multi-resolution system approximations. IN-
FORMS Journal on Computing (Mar. 2023). https://doi.org/10.
1287/ijoc.2023.1279.

[YC17] Yang H., Cai X.-C.: Two-level space–time domain decom-
position methods for flow control problems. Journal of Scientific
Computing 70, 2 (Feb. 2017), 717–743. https://doi.org/10.1007/
s10915-016-0263-0.

[ZB05] Zhu Y., Bridson R.: Animating sand as a fluid. ACM
Transactions on Graphics 24, 3 (July 2005), 965–972. https:
//doi.org/10.1145/1073204.1073298.

[ZCD*24] Zhou J., Chen D., Deng M., Deng Y., Sun Y., Wang
S., Xiong S., Zhu B.: Eulerian-Lagrangian fluid simulation on
particle flow maps. ACM Transactions on Graphics 43, 4 (July
2024), 76:1–76:20. https://doi.org/10.1145/3658180.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1145/1015706.1015744
https://doi.org/10.1145/1015706.1015744
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1145/3016963
https://doi.org/10.1145/3550454.3555450
https://doi.org/10.1145/3550454.3555450
https://doi.org/10.3390/app11062479
https://doi.org/10.1145/3641519.3657405
https://doi.org/10.1145/3641519.3657405
https://doi.org/10.48550/arXiv.1912.04232
https://doi.org/10.48550/arXiv.1912.04232
https://doi.org/10.1145/3561975.3562952
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/311535.311548
https://doi.org/10.1007/BF00350249
https://doi.org/10.1111/cgf.142637
https://doi.org/10.1111/cgf.142637
https://doi.org/10.1007/s11831-019-09394-0
https://doi.org/10.1007/s11831-019-09394-0
https://doi.org/10.1145/882262.882337
https://doi.org/10.1145/882262.882337
https://doi.org/10.48550/arXiv.2007.00016
https://doi.org/10.48550/arXiv.2007.00016
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1287/ijoc.2023.1279
https://doi.org/10.1287/ijoc.2023.1279
https://doi.org/10.1007/s10915-016-0263-0
https://doi.org/10.1007/s10915-016-0263-0
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/3658180

16 of 16 Kong et al. / Hierarchical-Diff-Fluid

[ZG11] Zaspel P., Griebel M.: Massively parallel fluid simu-
lations on Amazon’s HPC Cloud. In 2011 First International
Symposium on Network Cloud Computing and Applications
(Toulouse, France, Nov. 2011), pp. 73–78. https://doi.org/10.
1109/NCCA.2011.19.

[ZM18] Zheng Y., Marguinaud P.: Simulation of the perfor-
mance and scalability of message passing interface (MPI) com-
munications of atmospheric models running on exascale super-

computers. Geoscientific Model Development 11, 8 (Aug. 2018),
3409–3426. https://doi.org/10.5194/gmd-11-3409-2018.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Video S1

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70226, W

iley O
nline L

ibrary on [26/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/NCCA.2011.19
https://doi.org/10.1109/NCCA.2011.19
https://doi.org/10.5194/gmd-11-3409-2018

	Hierarchical Differentiable Fluid Simulation
	1. Introduction
	2. Previous Work
	2.1. Fluid Simulation
	2.2. Fluid Control
	2.3. Differentiable Simulation
	2.4. Domain Decomposition and Multi-Resolution Optimization

	3. Method
	3.1. Bulk Optimization
	3.2. Subgrid Simulation
	3.2.1. Advection
	3.2.2. Pressure Projection

	3.3. Subgrid Optimization
	3.4. Cascade Optimization

	4. Experiments and Results
	4.1. Rising Plume Final Frame Matching
	4.2. Benchmark and Stress Test
	4.3. 9040˘FLUID9040ˇ Letter Morphing
	4.4. Multi-Keyframe Animation
	4.5. Latte Art
	4.6. Looping Fluid Simulation
	4.7. Design Choice Analysis
	4.7.1. Subgrid Division Level
	4.7.2. Epoch and Super Epoch Benchmark

	4.8. 3D Implementation

	5. Conclusion and Discussion
	Acknowledgements
	Conflict of Interest
	References
	Supporting Information

